Yet another Deep Learning roadmap
COURSES AND BOOKS IN MACHINE LEARNING
FULL COURSES:
- CNNs for image recognition [Stanford] http://cs231n.github.io/
- Deep Learning for NLP [Stanford] http://cs224d.stanford.edu/
- NLP [Coursera] https://class.coursera.org/nlangp-001/lecture
- Neural Networks [Coursera] https://www.coursera.org/course/neuralnets
- Neural networks class - Université de Sherbrooke https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH
- Quantitive Finance & Machine Learning http://www.quantitativemacro.com/
- Deep learning for perception https://computing.ece.vt.edu/~f15ece6504/
TUTORIALS/BOOKS:
- Bayesian Methods and Probabilistic programming https://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/
- Small neural networks book http://neuralnetworksanddeeplearning.com/
- Bengio deep learning book http://www.deeplearningbook.org/
- UFLDL Tutorial http://ufldl.stanford.edu/tutorial/
- Brains, Minds and Machines Summer Course 2015 https://www.youtube.com/playlist?list=PLyGKBDfnk-iB_rPiS0BbSHefK1HJMrPK_
- Neural networks with Theano and Lasagne https://github.com/ebenolson/pydata2015
COURSES AND BOOKS IN COMPUTER SCIENCE
- Functional Programming: https://github.com/MostlyAdequate/mostly-adequate-guide
- Probabilistic Programming: https://bitbucket.org/probprog/mlss2015
- Computational Investing [Coursera] https://www.coursera.org/learn/computational-investing
- Product Management [Coursera] https://www.coursera.org/specializations/product-management
- Tensor Algebra https://habrahabr.ru/post/261421/
POTENTIALLY USEFUL CODE
ARTICLES/VIDEOS TO READ/WATCH AND PRACTICE
CNN
RNN + NLP
PROBABILITY
CLUSTERING
REINFORCEMENT LEARNING
OTHER:
BLOGS TO READ
SCIENTIFIC PAPERS TO READ
- Derivatives for convolutions: https://jianfengwang.files.wordpress.com/2015/07/forwardandbackwardpropagationofconvolutionallayer.pdf
- SqueezeNet: http://arxiv.org/pdf/1602.07360v2.pdf
- Deep Spiking Networks: http://arxiv.org/pdf/1602.08323v1.pdf
- Riemannian Neural Networks: http://arxiv.org/pdf/1602.08007v1.pdf
- Deep Residual Learning: http://arxiv.org/pdf/1512.03385v1.pdf
- GENERATIVE ADVERSARIAL NETWORKS: http://arxiv.org/pdf/1511.06434v1.pdf
- Generating Images from Captions with Attention: http://arxiv.org/abs/1511.02793
- Parsing and Sentence Understanding: http://www.foldl.me/uploads/papers/acl2016-spinn.pdf
- Semantic Object Parsing with Graph LSTM: http://arxiv.org/pdf/1603.07063v1.pdf
- Explaining the Predictions of Any Classifier: http://arxiv.org/pdf/1602.04938v1.pdf
- Regularizing CNN on the Loss Layer: http://research.microsoft.com/en-us/um/people/jingdw/pubs/cvpr16-disturblabel.pdf
- Identity Mappings in Deep Residual Networks: http://arxiv.org/pdf/1603.05027v2.pdf
Tags: machinelearning, deeplearing